SOLUTION - DTCB (CTT) - 9/5/2015

PROBLEM 1 (2M)

Express the right voltage source and two right-most resistors as a Thevenin equivalent, with Thevenin voltage $20 /(20+30) *(-10 \mathrm{~V})=-4 \mathrm{~V}$ and Thevenin resistance $20 \Omega / / 30 \Omega=20 \times 30 /(20+30)=12 \Omega$
According to superposition theorem, two output voltages are calculated as follows
Case 1: $\mathrm{V}_{\mathrm{IN} 1}=-4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 2}=+5 \mathrm{~V}$ (short-cuited), OPAMP becomes inverting amplifier
Hence, $\mathrm{V}_{\text {out } 1}=(-24 / 12+12)(-4)=+4 \mathrm{~V}$
Case $2: \mathrm{V}_{\mathrm{IN} 2}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 1}=-4 \mathrm{~V}$ (short-circuited), OPAMP is known as noninverting amplifier
Hence, $\mathrm{V}_{\text {out } 2}=(1+24 / 12+12)(+5)=+10 \mathrm{~V}$
Finally, $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {out } 1}+\mathrm{V}_{\text {out } 2}=+14 \mathrm{~V}>+12 \mathrm{~V}$ (positive power supply $)$
It's said that OPAMP is in positive saturation and $\mathrm{V}_{\text {out }}=+12 \mathrm{~V}$

PROBLEM 2 (2 M)

$\mathrm{I}_{\mathrm{ZMAX}}=\mathrm{P}_{\mathrm{ZMAX}} / \mathrm{V}_{\mathrm{Z}}=150 \mathrm{~mW} / 12=12,5 \mathrm{~mA}$
$\mathrm{I}_{\text {BMAX }}=\mathrm{I}_{\mathrm{S}}-\mathrm{I}_{\text {ZMIN }}=16 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{S}}=(36-12) / 1,5 \mathrm{~K}=16 \mathrm{~mA}$
$\mathrm{I}_{\text {CMAX }}=100 \times 16 \mathrm{~mA}=1,6 \mathrm{~A}$
$I_{S}=I_{Z}+I_{B}=$ const (from KCL at node B)
$\mathrm{R}_{\text {LMIN }}=12 / 1,6=7,5 \Omega$
$\mathrm{I}_{\text {BMIN }}=16-12,5=3,5 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{CMIN}}=100 \times 3,5 \mathrm{~mA}=0,35 \mathrm{~A}$
$\mathrm{R}_{\mathrm{LMAX}}=12 / 0,35=34,3 \Omega$

PROBLEM 3(2M)
$I_{C}=I_{E}=100 I_{B}$
$6=10 K * I_{B}+0,7+0,1 K * 100 I_{B}$
$\mathrm{I}_{\mathrm{B}}=0,265 \mathrm{~mA}$
$I_{C}=I_{E}=26,5 \mathrm{~mA}$

> | $V_{\text {TH }}=\left(R_{2} / R_{1}+R_{2}\right) * V_{c c}$ |
| :--- |
| $R_{2} /\left(R_{1}+R_{2}\right)=6 / 36=1 / 6$ |
| $R_{1} * R_{2} /\left(R_{1}+R_{2}\right)=10 \mathrm{~K} \Omega$ |
| $\frac{R_{1}}{}=60 \mathrm{~K} \Omega$ |
| $R_{2}=12 \mathrm{~K} \Omega$ |

$\mathrm{V}_{\mathrm{CE}}=36-1 \mathrm{~K} * 26,5-0,1 \mathrm{~K} * 26,5=\underline{6,85 \mathrm{~V}}$

$$
V_{\mathrm{E}}=0,1 \mathrm{~K} * 26,5 \mathrm{~mA}=2,65 \mathrm{~V}
$$

PROBLEM 4 (2M)
$\mathrm{Y}=\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{X}+\mathrm{X} \overline{\mathrm{B}} \overline{\mathrm{C}}=000+001+000+100$

A	B	C	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Diode ON in one of three following input combinations
such as $000,001,100$.
$R=(5-0.7) / 2 \mathrm{~mA}=2,15 \mathrm{~K} \Omega$

PROBLEM 5 (2M)
OPAMP1 given as $A_{v 1}=+6$ (noninverting amp)
Hence, $\mathrm{V}_{01}=(+6) * 0,5 \sin \omega t[\mathrm{~V}]$
$V_{01}=3 \sin \omega t[V]$
$V_{02}=-9 \sin \omega t[V]$

OPAMP 2 known as inverting amp
Hence, $\mathrm{A}_{\mathrm{v} 2}=-9 / 3=-3$
The total voltage gain determined by
$\mathrm{A}_{\mathrm{v}}=(+6)(-3)=-18$
$R=4,7 \mathrm{~K} \Omega * 3=14,1 \mathrm{~K} \Omega$

