SOLUTION - DTCB (CTT) - 9/5/2015

PROBLEM 1 (2M)

Express the right voltage source and two right-most resistors as a Thevenin equivalent, with Thevenin voltage 20/(20+30) *(-10V) = -4V and Thevenin resistance $20 \Omega / / 30 \Omega = 20x30 / (20+30) = 12 \Omega$ According to superposition theorem, two output voltages are calculated as follows

Case 1 : $V_{IN1} = -4V$, $V_{IN2} = +5V$ (short-cuited), OPAMP becomes inverting amplifier

Hence, $V_{OUT 1} = (-24 / 12 + 12)(-4) = +4V$

Case 2 : $V_{IN2} = +5V$, $V_{IN1} = -4V$ (short-circuited), OPAMP is known as noninverting amplifier

Hence , $V_{OUT 2} = (1 + 24 / 12 + 12) (+5) = +10V$

Finally , $V_{OUT} = V_{OUT 1} + V_{OUT 2} = +14V > +12 V$ (positive power supply)

It's said that OPAMP is in positive saturation and $V_{\mbox{\tiny OUT}}$ = + 12 V

PROBLEM 4 (2M)

$Y = \overline{A} \ \overline{B} \ X + X \ \overline{B} \ \overline{C} = 000 + 001 + 000 + 100$

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Diode ON in one of three following input combinations such as 000, 001, 100. R = (5 - 0.7) / 2mA = 2,15 K Ω

PROBLEM 5 (2M) OPAMP 1 given as $A_{V1} = +6$ (noninverting amp) Hence , $V_{01} = (+6) * 0,5 \sin \omega t$ [V]

 $V_{01} = 3 \sin \omega t [V]$ $V_{02} = -9 \sin \omega t [V]$

OPAMP 2 known as inverting amp Hence , $A_{V2} = -9/3 = -3$ The total voltage gain determined by $A_V = (+6)(-3) = -18$ $R = 4,7K\Omega * 3 = 14,1K\Omega$

